Answer all question on the back of this page (or on a separate sheet). Please be as

 neat as you can. Show all work, including units. Circle your final answer clearly.
LaUnch Location and free $\Delta \mathrm{V}$

In the second homework we calculated that you need a $\Delta \mathrm{V}$ of about $8 \mathrm{~km} / \mathrm{s}$ to orbit the Earth. But that calculation ignored the fact that the Earth rotates (it ignored a lot of other thing like air resistance as well). The rotation of the Earth an can be a source of free $\Delta \mathrm{V}$ if you launch in the correct direction (eastward). How much ΔV you get depends on your location on the Earth.

More specifically, it depends on your latitude. The best place to get free $\Delta \mathrm{V}$ is at the equator.
To calculated how fast the Earth is rotating at the equator you need two pieces of data: the total distance around the equator, and the time it takes the Earth rotate 360°.

The distance around the equator is $2 \pi \mathrm{R}_{E}$, where R_{E} is the radius of the Earth $\left(\mathrm{R}_{E}=6,371 \mathrm{~km}\right)$.
The time it takes the Earth to rotate 360° is 23.93 hours
$\mathbf{1}$ (5 pts) Calculate the distance around the Earth's equator.
2 (5 pts) Calculate the time it takes the Earth to rotate in seconds.
$\mathbf{3}(10 \mathrm{pts})$ Calculate the speed of an object on the Earth's equator. This is the free $\Delta \mathrm{V}$ that the Earth's rotation gives you.

The speed of an object at any latitude can be found by:

$$
V_{e q} \cos (\theta)
$$

where $\mathrm{V}_{e q}$ is your speed at the equator, and θ is your latitude.

4 (5 pts) The main US launch site is Cape Canaveral located at a latitude of $\theta=28.5^{\circ}$. Calculate the free $\Delta \mathrm{V}$ at Cape Canaveral.

5 (5 pts) The Russians main launch site is the Baikonur Cosmodrome located at a latitude of $\theta=46^{\circ}$. Calculate the free $\Delta \mathrm{V}$ at the Baikonur Cosmodrome.

Make sure your calculator is set to degree mode. If you are using Google be sure to enter $\cos (28.5 \mathrm{deg})$.

Astronomy 105 Homework \#3 Name:

